Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 547
Filter
Add filters

Year range
1.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20245051

ABSTRACT

mRNA is a new class of drugs that has the potential to revolutionize the treatment of brain tumors. Thanks to the COVID-19 mRNA vaccines and numerous therapy-based clinical trials, it is now clear that lipid nanoparticles (LNPs) are a clinically viable means to deliver RNA therapeutics. However, LNP-mediated mRNA delivery to brain tumors remains elusive. Over the past decade, numerous studies have shown that tumor cells communicate with each other via small extracellular vesicles, which are around 100 nm in diameter and consist of lipid bilayer membrane similar to synthetic lipidbased nanocarriers. We hypothesized that rationally designed LNPs based on extracellular vesicle mimicry would enable efficient delivery of RNA therapeutics to brain tumors without undue toxicity. We synthesized LNPs using four components similar to the formulation used in the mRNA COVID19 vaccines (Moderna and Pfizer): ionizable lipid, cholesterol, helper lipid and polyethylene glycol (PEG)-lipid. For the in vitro screen, we tested ten classes of helper lipids based on their abundance in extracellular vesicle membranes, commercial availability, and large-scale production feasibility while keeping rest of the LNP components unchanged. The transfection kinetics of GFP mRNA encapsulated in LNPs and doped with 16 mol% of helper lipids was tested using GL261, U87 and SIM-A9 cell lines. Several LNP formations resulted in stable transfection (upto 5 days) of GFP mRNA in all the cell lines tested in vitro. The successful LNP candidates (enabling >80% transfection efficacy) were then tested in vivo to deliver luciferase mRNA to brain tumors via intrathecal administration in a syngeneic glioblastoma (GBM) mouse model, which confirmed luciferase expression in brain tumors in the cortex. LNPs were then tested to deliver Cre recombinase mRNA in syngeneic GBM mouse model genetically modified to express tdTomato under LoxP marker cassette that enabled identification of LNP targeted cells. mRNA was successfully delivered to tumor cells (70-80% transfected) and a range of different cells in the tumor microenvironment, including tumor-associated macrophages (80-90% transfected), neurons (31- 40% transfected), neural stem cells (39-62% transfected), oligodendrocytes (70-80% transfected) and astrocytes (44-76% transfected). Then, LNP formulations were assessed for delivering Cas9 mRNA and CD81 sgRNA (model protein) in murine syngeneic GBM model to enable gene editing in brain tumor cells. Sanger sequencing showed that CRISPR-Cas9 editing was successful in ~94% of brain tumor cells in vivo. In conclusion, we have developed a library of safe LNPs that can transfect GBM cells in vivo with high efficacy. This technology can potentially be used to develop novel mRNA therapies for GBM by delivering single or multiple mRNAs and holds great potential as a tool to study brain tumor biology.

2.
European Journal of Human Genetics ; 31(Supplement 1):706, 2023.
Article in English | EMBASE | ID: covidwho-20244996

ABSTRACT

Background/Objectives: The broad spectrum of clinical manifestations from SARS-COV-2 infection and observed risk factors for severe disease highlight the importance of understanding molecular mechanisms underlying SARS-CoV-2 associated disease pathogenesis. Research studies have identified a large number of host proteins that play roles in viral entry, innate immune response, or immune signalling during infection. The ability to interrogate subsets of these genes simultaneously within SARSCOV-2 infected samples is critical to understanding how their expression contribute to phenotypic variability of the disease caused by the pathogen. Method(s): 30 Nasopharyngeal swab were obtained and included SARS-CoV-2 infected and control samples. RNA was extracted, reverse transcribed and loaded onto flexible TaqMan array panels designed specifically for targeting the most cited genes related to SARS-COV-2 entry and restriction factors as well as cytokines, chemokines, and growth factors involved in the pathogenesis. Result(s): Our data indicated that not only were the levels of several of these host factors differentially modulated between the two study groups, but also that SARS-CoV-2 infected subjects presented with greater frequency of several important inflammatory cytokines and chemokines such as CCL2, CCL3, IFNG, entry receptors such as ACE2, TMRPS11A, and host restriction factors including LY6E and ZBP1. Conclusion(s): TaqMan array plates provide a fast, midthroughput solution to determine the levels of several virus and host-associated factors in various cell types and add to our understanding of how the pathogenesis may vary depending on gender, age, infection site etc.

3.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20243903

ABSTRACT

Background: High-titer neutralizing anti-cytokine autoantibodies have been shown to be involved in several acquired diseases, including pulmonary alveolar proteinosis, cryptococcal meningitis, and disseminated/extrapulmonary Nocardia infections (anti-GM-CSF autoantibodies), disseminated mycobacterial disease (anti-IFN-gamma autoantibodies), and some cases of severe COVID-19 infection (anti-type 1 interferons). Currently, patient blood samples are shipped via courier and require temperaturecontrolled conditions for transfer. This method is expensive and requires patients to have access to medical personnel to draw the blood. However, the well-established technique of collecting blood on a paper card as a dried blood spot (DBS) for diagnosis offers a point of care alternative which can be performed with a simple finger prick. This method is less invasive, cheaper, and allows for easy transport of patient samples. Method(s): 30 uL of whole blood from patients was blotted on filter paper and stored at 4C until use. The filter paper was hole punched and each punched spot was eluted with 150 uL of a 0.05% Tween PBS solution at room temperature overnight. The eluate was screened for anti-cytokine autoantibodies using a particle-based approach. Patient plasma was also screened in conjunction for comparison. Result(s): We confirmed the presence of autoantibodies in the DBS eluate from 4 previously diagnosed patients with anti-GM-CSF autoantibodies and 2 patients with anti-IFN-gamma autoantibodies. Functional studies showed the DBS eluate from a patient with anti-GM-CSF autoantibodies was able to block GM-CSF-induced STAT-5 phosphorylation in normal PBMC. As a proof of concept and to increase the number of patients evaluated, we also confirmed the presence of anti-cytokine autoantibodies using dried plasma eluate from 9 patients with known anti-GM-CSF autoantibodies and 9 patients with anti-IFN-gamma autoantibodies. Levels detected in DBS analyses were comparable to the levels found in plasma from the same patients not subjected to blotting and elution. Temperature studies showed that the autoantibodies were detected at similar levels when stored at 4C, 25C, and 40C for a week. Conclusion(s): The diagnosis of pathogenic anti-cytokine autoantibodies should be considered in the context of unusual or adult-onset infections, and screening for this diagnosis can be performed with dried blood spot testing.Copyright © 2023 Elsevier Inc.

4.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20242997

ABSTRACT

Introduction: Macrophage activation syndrome (MAS) is a severe hyper inflammatory condition caused by the over-activation and proliferation of T cells, NK cells and macrophages. It is often associated with complications of rheumatic/immune diseases. We present a case of a 15-year-old female who experiences recurrent episodes of MAS without any known definitive underlying etiology. Case Presentation: A 15-year-old previously healthy female developed fatigue, fevers, myalgia, chest pain, splenomegaly and lymphadenopathy 10 days after receiving her first Pfizer COVID-19 vaccine. Her symptoms recurred 10 days after receiving the second dose. Her myocarditis, MIS-C, and infectious work up was negative except for positive EBV IgG. Laboratory studies revealed anemia, hypertriglyceridemia, hypofibrinogenemia, and hyperferritinemia. She initially responded to decadron;however, her symptoms recurred with steroid taper. Bone marrow biopsy revealed hemophagocytosis. Whole exome sequencing (WES) revealed a heterozygous variant of uncertain significance in UNC13D c.962C>A (p.Thr321Asn). She had multiple re-admissions with significantly elevated inflammatory markers, including extremely high IL2-R, IL-18 and CXCL9. Each episode was complicated by an acute viral infection. She responds to high dose steroids, anti-IL-1, and JAK inhibitors. Nonetheless, it has been difficult to wean decadron without triggering a flare. She continues to require increasing doses of baricitinib. Discussion(s): MAS may be seen as a complication of rheumatic diseases, as well as inborn errors of immunity. However, none of these conditions have been diagnosed in this patient despite extensive testing, including WES. The degree of her immune dysregulation has been very severe making her disease process unpredictable and extremely difficult to control. She has frequent flares precipitated by viral infections or attempts at adjusting her immunomodulators. Weaning her medications has been challenging as she continues to require increasing doses of baricitinib and corticosteroids. The UNC13D gene is associated with autosomal recessive familial hemophagocytic lymphohistiocytosis type 3 (FHL3). Our patient is heterozygous for an UNC13D variant of uncertain significance. Additional genetic inquiries with whole genome sequencing to help elucidate the underlying etiology of her severe condition is being conducted. We hypothesize she developed MAS due to a combination of genetic predisposition, prior EBV infection, and immune stress associated with the COVID-19 vaccine. [Formula presented] [Formula presented] [Formula presented]Copyright © 2023 Elsevier Inc.

5.
Annals of the Rheumatic Diseases ; 82(Suppl 1):578, 2023.
Article in English | ProQuest Central | ID: covidwho-20242313

ABSTRACT

BackgroundAnti-MDA5 antibody positive dermatomyositis (MDA5-DM) is characterized by high mortality due to rapid progressive ILD. MDA5 is a cytosolic protein and a family of RIG-I like receptor, which functions as a virus RNA sensor and induces the production of such as type-1 IFN. Although little is known about the pathogenesis of MDA5-DM, it is notable that the similarities were reported between COVID-19 infection and MDA5-DM. It may suggest that there is a common underlying autoinflammatory mechanism. We reported that in MDA5-DM, (1) RIG-I-like receptor signaling is enhanced and (2) antiviral responses such as type 1 IFN signaling are also enhanced as compare with anti-ARS-antibody positive DM, and (3) the key for survival is suppression of RIG-I-like and IFN signaling (EULAR2022, POS0390). We also found that a significant role for uncontrolled macrophage in the pathogenesis of ILD by our autopsy case. Recently, it has been reported that tacrolimus (TAC) and cyclophosphamide (CY) combination therapy (TC-Tx) has improved the prognosis of cases with early onset of the disease, but there are cases that cannot be saved. Therefore, we devised BRT therapy (BRT-Tx). The Tx combines baricitinib (BAR), which inhibits GM-CSF and IFN-mediated signaling and effectively suppresses uncontrolled macrophages, with rituximab (RTX) and TAC, which rapidly inhibits B and T cell interaction and ultimately prevents anti-MDA5 antibody production.ObjectivesTo determine the differences in gene expression between BRT and TC-Tx for MDA5-DM in peripheral blood.MethodsTotal of 6 MDA5-DM (TC: 3, BRT: 3) were included and all of them had multiple poor prognostic factors. Peripheral whole blood was collected at just before and 2-3 months after the treatment. RNA was extracted, and quantified using a next-generation sequencer. Differentially Expressed Genes (DEGs) were identified by pre vs. post treatment. Gene Ontology (GO), clustering and Gene Set Variation Analysis (GSVA) were performed to DEGs. As one BRT case was added since our last year's report, we also reanalyzed the surviving vs. fatal cases. The IFN signature was scored separately for Types 1, 2, and 3, and the changes between pre- and post-treatment were investigated.ResultsTwo of three cases with TC died during treatment, while all three cases on BRT recovered. The cluster analysis of the DEGs separated deaths from survivors, not by type of treatment. Comparing surviving and dead cases, GO analysis revealed that the immune system via immunoglobulins and B cells was significantly suppressed in surviving cases. GO analysis of DEGs in each therapeutic group showed that expression of B cell-related genes such as lymphocyte proliferation and B cell receptor signaling pathway were significantly suppressed in BRT-Tx. On the other hand, TC-Tx significantly suppressed such pathways as cell proliferation and cell surface receptor signaling, and was less specific for the target cells than BRT-Tx. The changes in IFN signature score after treatment showed an increase in type 2 and 3 IFN scores in all fatal cases and an increase in type 1 IFN score in one fatal case.ConclusionBRT-Tx significantly suppressed gene expression associated with B cells, while TC-Tx was characterized by low specificity of therapeutic targets and suppression of total cell proliferation. Comparison of surviving and dead cases revealed that the combination of RTX contributed to the success of treatment, as suppression of the immune system mediated by immunoglobulins and B cells is the key for survival. Analysis of the IFN signature revealed an increase in IFN score after treatment in fatal cases, indicating that the combination of BAR is beneficial. The superiority of BRT-Tx seems clear from the fact that all patients survived with BRT-Tx while only one/three patients survived with TC-Tx.REFERENCES:NIL.Acknowledgements:NIL.Disclosure of InterestsMoe Sakamoto: None declared, Yu Nakai: None declared, Yoshiharu Sato: None declared, Yoshinobu Koyama Speakers bureau: Abbvie, Asahikasei, Ayumi, BMS, Esai, Eli-Lilly, Mitsubishi Tanabe, Grant/research support from: Abbvie, GSK.

6.
Nieren- und Hochdruckkrankheiten ; 52(4):134-135, 2023.
Article in English | EMBASE | ID: covidwho-20241899

ABSTRACT

Objective: COVID-19 has emerged as a significant global health crisis causing devastating effects on world population accounting for over 6 million deaths worldwide. Although acute RTI is the prevalent cause of morbidity, kidney outcomes centered on a spectrum of AKI have evolved over the course of the pandemic. Especially the emerging variants have posed a daunting challenge to the scientific communities, prompting an urging requirement for global contributions in understanding the viral dynamics. In addition to canonical genes, several subgroup- specific accessory genes are located between the S and E genes of coronaviruses regarding which little is known. Previous studies have shown that accessory proteins (aps) in viruses function as viroporins that regulate viral infection, propagation and egress [1]. In this study we attempted to characterize the function of aps of coronavirus variants as ion channels. Furthermore, we also probed the interaction of ap4 with the host system. Method(s): Serial passaging (selection pressure), growth kinetics, confocal imaging, genome sequence analysis and proteomics were performed in Huh-7, MRC5 cells and/or human monocyte derived macrophages. Potassium uptake assay was performed in a Saccharo myces cerevisiae strain, which lacks the potassium transporters trk1 and trk2. Ion conductivity experiments were performed in Xenopus laevis oocytes using Two Electrode Voltage Clamp (TEVC) method. Result(s): Serial passaging demonstrated the acquisition of several frameshift mutations in ORF4 resulting in C-terminally truncated protein versions (ap4 and ap4a) and indicate a strong selection pressure against retaining a complete ORF4 in vitro. Growth kinetics in primary cells illustrated a reduction of viral titers when the full-length ap4 was expressed compared to the C-terminally truncated protein ap4a. Confocal imaging showed that ap4 and ap4a are not exclusively located in a single cellular compartment. Potassium uptake assay in yeast and TEVC analyses in Xenopus oocytes showed that ap4 and ap4a act as a weak K+ selective ion channel. In addition, accessory proteins of other virus variants also elicited microampere range of currents. Conclusion(s): Our study provides the first evidence that ap4 and other accessory proteins of coronavirus variants act as viroporins. Future studies are aimed at demonstrating the role of ap4 during the viral life cycle by modulating ion homeostasis of host cell in vivo (interacting proteins obtained from proteomic studies) and thereby serve as a tool for potential drug target.

7.
Current Nutrition and Food Science ; 19(6):602-614, 2023.
Article in English | EMBASE | ID: covidwho-20241090

ABSTRACT

In addition to the classical functions of the musculoskeletal system and calcium homeostasis, the function of vitamin D as an immune modulator is well established. The vitamin D receptors and enzymes that metabolize vitamin D are ubiquitously expressed in most cells in the body, including T and B lymphocytes, antigen-presenting cells, monocytes, macrophages and natural killer cells that trigger immune and antimicrobial responses. Many in vitro and in vivo studies revealed that vitamin D promotes tolerogenic immunological action and immune modulation. Vitamin D adequacy positively influences the expression and release of antimicrobial peptides, such as cathelicidin, defensin, and anti-inflammatory cytokines, and reduces the expression of proinflammatory cytokines. Evidence suggestss that vitamin D's protective immunogenic actions reduce the risk, complications, and death from COVID-19. On the contrary, vitamin D deficiency worsened the clinical outcomes of viral respiratory diseases and the COVID-19-related cytokine storm, acute respiratory distress syndrome, and death. The study revealed the need for more preclinical studies and focused on well-designed clinical trials with adequate sizes to understand the role of vitamin D on the pathophysiology of immune disorders and mechanisms of subduing microbial infections, including COVID-19.Copyright © 2023 Bentham Science Publishers.

8.
Cytotherapy ; 25(6 Supplement):S239, 2023.
Article in English | EMBASE | ID: covidwho-20239698

ABSTRACT

Background & Aim: Immune checkpoint inhibitors (ICI) revolutionized solid tumor treatment, however, in many tumors only partial response is achieved. Allocetra-OTS has an immune modulating effect on macrophages and dendritic cells and showed an excellent safety profile in patients including patients with sepsis and Covid-19. Here we investigated the anti-tumoral effect of Allocetra-OTS cellular therapy, in peritoneal solid tumor animal models. Methods, Results & Conclusion(s): Allocetra-OTS is manufactured from enriched mononuclear fractions and induced to undergo early apoptosis. Balb/c mice were inoculated intraperitoneally (IP) with AB12 (mesothelioma) with pLenti-PGK-V5-Luc-Neo and treated with anti- CTLA4 with or without Allocetra-OTS. Mice were monitored daily for clinical score and weekly using IVIS (Fig.1). Kaplan-Meier log rank test was done for survival. For Allocetra-OTS preparation, enriched mononuclear fractions were collected by leukapheresis from healthy eligible human donors and induced to undergo early apoptosis. Anti- CTLA4 standalone therapy significantly improved survival (Fig.2) from mean 34+/-9 to 44.9 +/-20 days. However, OTS standalone therapy was non-inferior and improved survival to 52.3 +/-20 days. Anti-CTLA4 + Allocetra-OTS combination therapy, ameliorated survival to 86.7+/-20 days with complete cancer remission in 60-100% of mice. Similar anti- tumoral effects of Allocetra-OTS were seen in mesothelioma model in a combination therapy with either anti-PD1 or cisplatin and using anti-PD1 in ID8 ovary cancer model. Based on single cell analysis confirmed by flow cytometry and pathology, the mechanism of action seems to be related or at least associated with an increase in f/480high peritoneal macrophages and a decrease in recruited macrophages, and to f/480high infiltration of the tumor. However, further studies are needed to confirm these observations. During IP tumor progression, Allocetra-OTS as a standalone therapy or in combination with ICI, or cisplatin, significantly reduced tumor size and resulted in complete remission in up to 100% treated mice. Similar results were obtained in ID8 ovary cancer. Based on excellent safety profile in > 50 patients treated in prior clinical trials for sepsis and Covid-19, Phase I/II clinical trial of Allocetra-OTS plus chemotherapy has started and three patient already recruited. A second phase I/II clinical trial of Allocetra- OTS plus anti-PD1, as a second- and third-line therapy in various cancers, was initiated in Q1 2023. [Figure presented]Copyright © 2023 International Society for Cell & Gene Therapy

9.
European Journal of Human Genetics ; 31(Supplement 1):342, 2023.
Article in English | EMBASE | ID: covidwho-20238003

ABSTRACT

Background/Objectives: Despite intensive research of the novel coronavirus SARS-CoV-2 and COVID-2019 caused by it, factors affecting the severity of the disease remains poorly understood. Clinical manifestations of COVID-2019 may vary from asymptomatic form to pneumonia, acute respiratory distress syndrome (ARDS) and multiorgan failure. Features of individual genetic landscape of patients can play an important role in development of the pathological process of COVID-19. In this regard the purpose of this study was to investigate the influence of polymorphic variants in genes (ADD1, CAT, IL17F, IL23R, NOS3, IFNL3, IL6, F2, F13A1, ITGB3, HIF1A, MMP12, VEGFA), associated with cardiovascular, respiratory and autoimmune pathologies, on the severity of COVID-19 and post-COVID syndrome in patients from Russia. Method(s): The study included 200 patients recovered from COVID-19. Two groups of patients were formed in accordance with clinical manifestations: with mild and moderate forms of the disease. The polymorphic variants were analysed with real-time PCR using commercial kits (Syntol). Result(s): 13 SNPs (rs4961;rs1001179;rs612242;rs11209026;rs2070744;rs8099917;rs1800795;rs1799963;rs5985;rs5918;rs11549465;rs652438;rs699947) were genotyped and comparative analysis of allele frequency distribution was carried out in two groups of patients recovered from COVID-2019. Conclusion(s): Identification of polymorphic variants in genome associated with severity of pathological processes in patients infected with SARS-CoV-2 can contribute to the identification of individuals with an increased risk of severe infection process and can also serve as a basis for developing personalized therapeutic approaches to the treatment of post-COVID syndrome.

10.
Advances in Traditional Medicine ; 23(2):321-345, 2023.
Article in English | EMBASE | ID: covidwho-20236383

ABSTRACT

The current outbreak of COVID-19 is caused by the SARS-CoV-2 virus that has affected > 210 countries. Various steps are taken by different countries to tackle the current war-like health situation. In India, the Ministry of AYUSH released a self-care advisory for immunomodulation measures during the COVID-19 and this review article discusses the detailed scientific rationale associated with this advisory. Authors have spotted and presented in-depth insight of advisory in terms of immunomodulatory, antiviral, antibacterial, co-morbidity associated actions, and their probable mechanism of action. Immunomodulatory actions of advised herbs with no significant adverse drug reaction/toxicity strongly support the extension of advisory for COVID-19 prevention, prophylaxis, mitigations, and rehabilitation capacities. This advisory also emphasized Dhyana (meditation) and Yogasanas as a holistic approach in enhancing immunity, mental health, and quality of life. The present review may open-up new meadows for research and can provide better conceptual leads for future researches in immunomodulation, antiviral-development, psychoneuroimmunology, especially for COVID-19.Copyright © 2021, Institute of Korean Medicine, Kyung Hee University.

11.
Asian Journal of Pharmaceutical and Clinical Research ; 16(5):13-18, 2023.
Article in English | EMBASE | ID: covidwho-20236199

ABSTRACT

We conducted a review and evaluated the already documents reports for the relationship among diabetes and COVID-19. The review outcome shows that the COVID-19 severity seems to be greater among patients with diabetes as comorbidity. So, strict glycemic control is imperative in patients infected with COVID-19. Thus, world-wide diabetes burden and COVID-19 pandemic must be deliberated as diabetes increases the COVID-19 severity. Established on this, it is precise significant to follow specific treatment protocols and clinical management in COVID-19 patients affected with diabetes to prevent morbidity and mortality.Copyright © 2023 The Authors.

12.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20234125

ABSTRACT

Breast cancer is the most common form of cancer and the second cancer-causing death in females. Although remission rates are high if detected early, survival rates drop substantially when breast cancer becomes metastatic. The most common sites of metastatic breast cancer are bone, liver and lung. Respiratory viral infections inflict illnesses on countless people. The latest pandemic caused by the respiratory virus, SARS-CoV-2, has infected more than 600 million worldwide, with documented COVID-related death upward of 1 million in the United States alone. Respiratory viral infections result in increased inflammation with immune cell influx and expansion to facilitate viral clearance. Prior studies have shown that inflammation, including through neutrophils, can contribute to dormant cancer cells reawakening and outgrowth. Moreover, inhibition of IL6 has been shown to decrease breast cancer lung metastasis in mouse models. However, how respiratory viral infections contribute to breast cancer lung metastasis remains to be unraveled. Using MMTV/PyMT and MMTV/NEU mouse models of breast cancer lung metastasis and influenza A virus as a model respiratory virus, we demonstrated that acute influenza infection and the accompanying inflammation and immune cell influx awakens and dramatically increased proliferation and expansion of dormant disseminated cancer cells (DCC) in the lungs. Acute influenza infection leads to immune influx and expansion, including neutrophils and macrophages, with increased proportion of MHCII+ macrophages in early time points, and a sustained decrease in CD206+ macrophages starting 6 days post-infection until 28 days after the initial infection. Additionally, we observed a sustained accumulation of CD4+ T cells around expanding tumor cells for as long as 28 days after the infection. Notably, neutrophil depletion or IL6 knockout reversed the flu-induced dormant cell expansion in the lung. Finally, awakened DCC exhibited downregulation of vimentin immunoreactivity, suggesting a role for phenotypic plasticity in DCC outgrowth following viral infection. In conclusion, we show that respiratory viral infections awaken and increase proliferation of dormant breast cancer cells in the lung, and that depletion of neutrophils or blocking IL6 reverses influenza-induced dormant cell awakening and proliferation.

13.
European Journal of Human Genetics ; 31(Supplement 1):708, 2023.
Article in English | EMBASE | ID: covidwho-20233214

ABSTRACT

Background/Objectives: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease (COVID-19) enters the lung tissue through exocytosis, leading to the release of a large amount of pro-inflammatory cytokines called 'cytokine storm'. The aim was to provide more insight into relationship between plasma cytokines profile and fatal outcome of COVID-19. Method(s): Plasma cytokines (IL-17F,GM-CSF,IFNg,IL-10,CCL20/ MIP3a,IL-12P70,IL-13, IL-15,IL-17A,IL-22,IL-9,IL-1b,IL-33,IL-2,IL-21,IL-4,IL-23,IL-5,IL-6,IL-17E/IL-25,IL-27,IL-31,TNFa,TNFb,IL-28A) were detected in 30 patients with severe COVID-19 by a Luminex assay system with Milliplex Human Th17 Magnetic Premix 25 Plex Kit (HT17MG-14K-PX-25, Merk-Millipore, USA) according to the instructions. Patients were followed up for 30 days since admission to intensive care. 18 patients died and 12 patients survived during the period of observation. The control group comprised 10 individuals who had never been diagnosed with COVID-19. Result(s): IL-10 and CCL20/MIP3a plasma levels were elevated in non-survivors patients with COVID-19 compared to controls (p = 0.0027, p = 0.012, respectively). IL-15, IL-6, IL-27 plasma levels were higher in survivors with COVID-19 compared to controls (p = 0.049, p = 0.026, p = 0.00032, respectively). Interestingly, IL-15, IL-27 plasma levels were increased in non-survivors with COVID-19 compared to controls and survivors with severe COVID-19 (IL-15: p = 0.00098, p = 0.00014, respectively;IL-27: p = 0.011, p < 0.0001, respectively). Receiver operating characteristic (ROC) analysis has been conducted for IL-15 and IL-27. Cut-off value was estimated as 25.50 pg/ml for IL-15 and 1.51 pg/ml for IL-27. Conclusion(s): Our study demonstrated a more pronounced immune response in non-surviving patients with severe COVID-19. IL-15, IL-27 could be considered as a sensitive biomarker of the fatal outcome from COVID-19.

14.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20233149

ABSTRACT

It is known that inflammatory cytokines exacerbate the persistence and severity of various disease states. Breast cancer is the most frequently detected cancer among women worldwide and our recent studies suggest that the inflammatory state of breast (BrCa) cancer, a byproduct of elevated cytokine expression, induces epigenetic modifications leading to increased recurrence. Ongoing NCI clinical trial data (ClinicalTrials.gov, CCC19, NCT04354701) indicates that among patients with cancer and COVID-19, the mortality is high, and the most prevalent malignancies are of breast [21%] and prostate [16%] origin. Due to the risk of cytokine storm during SARS-CoV-2 infection, it is crucial to identify potential mechanisms of hyperinflammation in BrCa patients. In this study, we have evaluated the level of copy number alteration (CNA) of different inflammatory cytokines including IL-8, IL-1b, IL6, IL-8, GM-CSF, TNF-alpha and many others using cBioportal platform which includes over sixty-nine thousand tumor samples (n>69,000 from 213 different studies) from over 33 different cancers. We found that IL-8 has the highest level of amplification in different breast cancers subtypes. Besides, we also analyzed serum samples from BrCa patients, both recurrent and non-recurrent, by different proteomics methods to identify serum cytokines involved in prognosis and recurrence. Comparative data analysis between non-recurrent BrCa against recurrent BrCa patients identified several proteins with very high significance, mostly proteins associated with epigenetic pathways including HDAC9 (P = 0.0035), HDAC5 (P = 0.013), and HDAC7 (P = 0.020). Besides, we identified differential expression of several pro-inflammatory cytokines and immune regulators (IL-8, IL-4, IL-18, IL-12p70) that were present only in recurrent BrCa patient serum. Our data indicate that inflammatory processes contribute to epigenetic modifications that ultimately play a critical role in breast cancer recurrence. In terms of COVID-19 associated co-morbidity, the already dysregulated inflammatory state of BrCa patients may increase their susceptibility to cytokine-storm, leading to increased severity of COVID-related complications and increased mortality rate. Specifically, we hypothesize that the identified elevated level of IL-8 in BrCa patients may lead to a higher basal level of inflammation and contribute to the risk of attaining cytokine-storm during SARS-CoV-2 infection, making it a valuable target for future studies.

15.
Front Pharmacol ; 14: 1200058, 2023.
Article in English | MEDLINE | ID: covidwho-20245345

ABSTRACT

COVID-19 induces acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) and leads to severe immunological changes that threatens the lives of COVID-19 victims. Studies have shown that both the regulatory T cells and macrophages were deranged in COVID-19-induced ALI. Herbal drugs have long been utilized to adjust the immune microenvironment in ALI. However, the underlying mechanisms of herbal drug mediated ALI protection are largely unknown. This study aims to understand the cellular mechanism of a traditional Chinese medicine, Qi-Dong-Huo-Xue-Yin (QD), in protecting against LPS induced acute lung injury in mouse models. Our data showed that QD intrinsically promotes Foxp3 transcription via promoting acetylation of the Foxp3 promoter in CD4+ T cells and consequently facilitates CD4+CD25+Foxp3+ Tregs development. Extrinsically, QD stabilized ß-catenin in macrophages to expedite CD4+CD25+Foxp3+ Tregs development and modulated peripheral blood cytokines. Taken together, our results illustrate that QD promotes CD4+CD25+Foxp3+ Tregs development via intrinsic and extrinsic pathways and balanced cytokines within the lungs to protect against LPS induced ALI. This study suggests a potential application of QD in ALI related diseases.

16.
mBio ; : e0083423, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-20240955

ABSTRACT

Alveolar macrophages (AMs) are unique lung resident cells that contact airborne pathogens and environmental particulates. The contribution of human AMs (HAMs) to pulmonary diseases remains poorly understood due to the difficulty in accessing them from human donors and their rapid phenotypic change during in vitro culture. Thus, there remains an unmet need for cost-effective methods for generating and/or differentiating primary cells into a HAM phenotype, particularly important for translational and clinical studies. We developed cell culture conditions that mimic the lung alveolar environment in humans using lung lipids, that is, Infasurf (calfactant, natural bovine surfactant) and lung-associated cytokines (granulocyte macrophage colony-stimulating factor, transforming growth factor-ß, and interleukin 10) that facilitate the conversion of blood-obtained monocytes to an AM-like (AML) phenotype and function in tissue culture. Similar to HAM, AML cells are particularly susceptible to both Mycobacterium tuberculosis and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. This study reveals the importance of alveolar space components in the development and maintenance of HAM phenotype and function and provides a readily accessible model to study HAM in infectious and inflammatory disease processes, as well as therapies and vaccines.IMPORTANCEMillions die annually from respiratory disorders. Lower respiratory track gas-exchanging alveoli maintain a precarious balance between fighting invaders and minimizing tissue damage. Key players herein are resident AMs. However, there are no easily accessible in vitro models of HAMs, presenting a huge scientific challenge. Here, we present a novel model for generating AML cells based on differentiating blood monocytes in a defined lung component cocktail. This model is non-invasive, significantly less costly than performing a bronchoalveolar lavage, yields more AML cells than HAMs per donor, and retains their phenotype in culture. We have applied this model to early studies of M. tuberculosis and SARS-CoV-2. This model will significantly advance respiratory biology research.

17.
Cureus ; 15(4): e37231, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-20240359

ABSTRACT

A 40-year-old woman presented with four weeks of intermittent high-grade fever, cough, and joint pain, and two weeks of a generalized rash. She was found to have adult-onset Still's disease (AOSD) and rapidly developed macrophage activation syndrome (MAS) on the second day of admission. Among infectious etiologies, Epstein-Barr virus and members of the herpes virus family are common triggers of MAS. However, our patient was found to have reactivation/recurrence of parvovirus B19 infection as the cause; this is an uncommon trigger reported infrequently in the medical literature. Despite intensive treatment, the patient passed away.

18.
Br J Pharmacol ; 2023 May 31.
Article in English | MEDLINE | ID: covidwho-20236393

ABSTRACT

BACKGROUND AND PURPOSE: COVID-19 infections caused by SARS-CoV-2 disseminated through human-to-human transmission can evoke severe inflammation. Treatments to reduce the SARS-CoV-2-associated inflammation are needed and are the focus of much research. In this study, we investigated the effect of N-ethyl-N'-[(3ß,5α)-17-oxoandrostan-3-yl] urea (NEOU), a novel 17α-ketosteroid derivative, on the severity of COVID-19 infections. EXPERIMENTAL APPROACH: Studies were conducted in SARS-CoV-2-infected K18-hACE2 mice. KEY RESULTS: SARS-CoV-2-infected K18-hACE2 mice developed severe inflammatory crises and immune responses along with up-regulation of genes in associated signalling pathways in male more than female mice. Notably, SARS-CoV-2 infection down-regulated genes encoding drug metabolizing cytochrome P450 enzymes in male but not female mice. Treatment with NEOU (1 mg·kg-1 ·day-1 ) 24 or 72 h post-viral infection alleviated lung injury by decreasing expression of genes encoding inflammatory cytokines and chemokines while increasing expression of genes encoding immunoglobins. In situ hybridization using RNA scope™ probes and immunohistochemical assays revealed that NEOU increased resident CD169+ immunoregulatory macrophages and IBA-1 immunoreactive macrophage-dendritic cells within alveolar spaces in the lungs of infected mice. Consequentially, NEOU reduced morbidity more prominently in male than female mice. However, NEOU increased median survival time and accelerated recovery from infection by 6 days in both males and females. CONCLUSIONS AND IMPLICATIONS: These findings demonstrate that SARS-CoV-2 exhibits gender bias by differentially regulating genes encoding inflammatory cytokines, immunogenic factors and drug-metabolizing enzymes, in male versus female mice. Most importantly, we identified a novel 17α-ketosteroid that reduces the severity of COVID-19 infection and could be beneficial for reducing impact of COVID-19.

19.
Canadian Journal of Respiratory, Critical Care, and Sleep Medicine ; 7(1):36-40, 2023.
Article in English | EMBASE | ID: covidwho-2324856

ABSTRACT

Autoimmune pulmonary alveolar proteinosis (PAP) is a rare disease, especially in pediatrics, but important to consider, as it may avoid unnecessary and/or invasive investigations and delayed diagnosis. This case report highlights an adolescent girl with rapid onset dyspnea but an unremarkable physical exam and initial testing. However, due to a high index of suspicion, a chest computed tomography (CT) scan was done, revealing a "crazy paving" pattern, which then prompted expedited assessment. This finding, however, is not as specific as often discussed and has a broad differential diagnosis, which will be reviewed in detail as part of this case. Furthermore, this report demonstrates a diagnostic approach for PAP that avoids lung biopsy, previously considered to be required for diagnosis of PAP, but is increasingly becoming unnecessary with more advanced blood tests and understanding of their sensitivity and specificity. Additionally, management strategies for PAP will be briefly discussed.Copyright © 2022 Canadian Thoracic Society.

20.
Rheumatology (United Kingdom) ; 62(Supplement 2):ii51-ii52, 2023.
Article in English | EMBASE | ID: covidwho-2324199

ABSTRACT

Background/Aims Cases of new autoimmune and autoinflammatory conditions have been reported among COVID-19 survivors. A literature review on newonset autoimmune connective tissue diseases (ACTDs) following infection with COVID-19 is lacking.This systematic literature review aimed to evaluate the potential association between COVID-19 infection and the development of new-onset ACTDs in adults. Methods Articles published until September 2022, investigating the association between COVID-19 infection and new-onset ACTDs were included. The ''population'' searched was patients with disease terms for autoimmune connective tissue diseases, including (but not limited to) systemic lupus erythematosus (SLE), Sjogren's syndrome, systemic sclerosis (SSc), any idiopathic inflammatory myositis (IIM), antisynthetase syndrome, mixed CTD and undifferentiated CTD (and related MeSH terms), with ''intervention'' as COVID-19 and related terms. For terms for COVID-19, a dedicated search strategy developed by the National Institute for Clinical Excellence was used.Medline, Embase, and Cochrane databases were searched, restricted to English-language articles only. Eligible articles were: case reports and series (of any sample size), observational studies, qualitative studies and randomised controlled trials. Patients developing ACTDs without prior COVID-19 or reporting flares of existing ACTDs were excluded. Information was extracted on patient demographics, new ACTDs' onset time, clinical characteristics, COVID-19 and ACTD treatment, and COVID-19 and ACTDs outcomes. The protocol was registered in PROSPERO (CRD42022358750). Results After deduplication, 2239 articles were identified. After screening title and , 2196 papers were excluded, with 43 proceeding to fulltext screening. Ultimately, 28 articles (all single case reports) were included. Of the 28 included patients, 64.3% were female. The mean age was 51.1 years (range 20-89 years). The USA reported the most cases (9/28). ACTD diagnoses comprised: 11 (39.3%) IIM (including 4 cases of dermatomyositis);7 (25%) SLE;4 (14.3%) anti-synthetase syndrome;4 (14.3%) SSc;2 (7.1%) other ACTD (one diagnosed with lupus/MCTD overlap). Of eight, four (14.3%) patients (including that with lupus/MCTD) were diagnosed with lupus nephritis. The average onset time from COVID-19 infection to ACTD diagnosis was 23.7days. A third of the patients were admitted to critical care, one for ACTD treatment for SLE with haemophagocytic lymphohistiocytosis (14 sessions of plasmapheresis, rituximab and intravenous corticosteroids) and nine due to COVID-19. The majority (80%) of patients went into remission of ACTD following treatment, while two (10%) patients died- one due to macrophage activation syndrome associated with anti-synthetase syndrome and two from unreported causes. Conclusion Our results suggest a potential association between COVID-19 infection and new-onset ACTDs, predominantly in young females, reflective of wider CTD epidemiology. The aetiology and mechanisms by which ACTDs arise following COVID-19 infection remain unknown and require more robust epidemiological data.

SELECTION OF CITATIONS
SEARCH DETAIL